Nuprl Lemma : strong-subtype-union-base
∀[A:Type]. (strong-subtype(A;A ⋃ Base) ∧ strong-subtype(A;Base ⋃ A))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
b-union: A ⋃ B
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
strong-subtype: strong-subtype(A;B)
Lemmas referenced : 
strong-subtype_witness, 
b-union_wf, 
base_wf, 
strong-subtype-b-union-better, 
strong-subtype-isect-base, 
strong-subtype_transitivity, 
strong-subtype-ext-equal, 
subtype_rel_b-union_iff, 
subtype_rel_b-union-right, 
subtype_rel_b-union-left
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  (strong-subtype(A;A  \mcup{}  Base)  \mwedge{}  strong-subtype(A;Base  \mcup{}  A))
Date html generated:
2016_05_13-PM-04_11_54
Last ObjectModification:
2015_12_26-AM-11_12_19
Theory : subtype_1
Home
Index