Nuprl Lemma : continuous-monotone-product
∀[F,G:Type ⟶ Type].
  (ContinuousMonotone(T.F[T] × G[T])) supposing (ContinuousMonotone(T.G[T]) and ContinuousMonotone(T.F[T]))
Proof
Definitions occuring in Statement : 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
and: P ∧ Q
, 
type-monotone: Monotone(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
strong-type-continuous: Continuous+(T.F[T])
, 
ext-eq: A ≡ B
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_simple_product, 
subtype_rel_wf, 
strong-continuous-product, 
nat_wf, 
subtype_rel_weakening, 
continuous-monotone_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
lambdaEquality, 
isectEquality, 
independent_pairEquality, 
functionEquality, 
cumulativity, 
productEquality
Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (ContinuousMonotone(T.F[T]  \mtimes{}  G[T]))  supposing 
          (ContinuousMonotone(T.G[T])  and 
          ContinuousMonotone(T.F[T]))
Date html generated:
2016_05_13-PM-04_09_52
Last ObjectModification:
2015_12_26-AM-11_22_32
Theory : subtype_1
Home
Index