Nuprl Lemma : continuous-monotone-product

[F,G:Type ⟶ Type].
  (ContinuousMonotone(T.F[T] × G[T])) supposing (ContinuousMonotone(T.G[T]) and ContinuousMonotone(T.F[T]))


Proof




Definitions occuring in Statement :  continuous-monotone: ContinuousMonotone(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) type-continuous: Continuous(T.F[T]) subtype_rel: A ⊆B so_lambda: λ2x.t[x] strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B guard: {T} prop:
Lemmas referenced :  subtype_rel_simple_product subtype_rel_wf strong-continuous-product nat_wf subtype_rel_weakening continuous-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality independent_isectElimination hypothesis productElimination axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality lambdaEquality isectEquality independent_pairEquality functionEquality cumulativity productEquality

Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (ContinuousMonotone(T.F[T]  \mtimes{}  G[T]))  supposing 
          (ContinuousMonotone(T.G[T])  and 
          ContinuousMonotone(T.F[T]))



Date html generated: 2016_05_13-PM-04_09_52
Last ObjectModification: 2015_12_26-AM-11_22_32

Theory : subtype_1


Home Index