Nuprl Lemma : function-subtype-top
∀[A,B:Type].  ((A ⟶ B) ⊆r Top)
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
top: Top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
because_Cache, 
universeEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin
Latex:
\mforall{}[A,B:Type].    ((A  {}\mrightarrow{}  B)  \msubseteq{}r  Top)
Date html generated:
2016_05_13-PM-04_10_48
Last ObjectModification:
2015_12_26-AM-11_21_50
Theory : subtype_1
Home
Index