Nuprl Lemma : sqle-mono-implies-equal

[T:Type]. ∀[x,y:Base].  (x y ∈ T) supposing ((x ∈ T) and (x ≤ y)) supposing mono(T)


Proof




Definitions occuring in Statement :  mono: mono(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base universe: Type sqle: s ≤ t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mono: mono(T) all: x:A. B[x] implies:  Q is-above: is-above(T;a;z) exists: x:A. B[x] and: P ∧ Q cand: c∧ B prop:
Lemmas referenced :  istype-sqle istype-base mono_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution hypothesis dependent_functionElimination thin equalityTransitivity equalitySymmetry hypothesisEquality independent_functionElimination Error :dependent_pairFormation_alt,  because_Cache independent_pairFormation sqequalRule Error :productIsType,  Error :equalityIstype,  Error :inhabitedIsType,  sqequalBase extract_by_obid isectElimination Error :universeIsType,  Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:Base].    (x  =  y)  supposing  ((x  \mmember{}  T)  and  (x  \mleq{}  y))  supposing  mono(T)



Date html generated: 2019_06_20-PM-00_28_27
Last ObjectModification: 2019_01_20-PM-03_19_49

Theory : subtype_1


Home Index