Nuprl Lemma : sqle-mono-implies-equal
∀[T:Type]. ∀[x,y:Base].  (x = y ∈ T) supposing ((x ∈ T) and (x ≤ y)) supposing mono(T)
Proof
Definitions occuring in Statement : 
mono: mono(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
, 
sqle: s ≤ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
mono: mono(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
is-above: is-above(T;a;z)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
Lemmas referenced : 
istype-sqle, 
istype-base, 
mono_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
thin, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
Error :productIsType, 
Error :equalityIstype, 
Error :inhabitedIsType, 
sqequalBase, 
extract_by_obid, 
isectElimination, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:Base].    (x  =  y)  supposing  ((x  \mmember{}  T)  and  (x  \mleq{}  y))  supposing  mono(T)
Date html generated:
2019_06_20-PM-00_28_27
Last ObjectModification:
2019_01_20-PM-03_19_49
Theory : subtype_1
Home
Index