Nuprl Lemma : squash-per-class

[T:Type]. ∀[a:T].  (↓per-class(T;a))


Proof




Definitions occuring in Statement :  per-class: per-class(T;a) uall: [x:A]. B[x] squash: T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T per-class: per-class(T;a) prop: uimplies: supposing a guard: {T} implies:  Q subtype_rel: A ⊆B true: True
Lemmas referenced :  b-union_wf equal_functionality_wrt_subtype_rel2 base_wf subtype_rel_b-union-right per-class_wf true_wf squash_wf equal-wf-base-T
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed isect_memberEquality isectElimination because_Cache universeEquality pointwiseFunctionality dependent_set_memberEquality equalityTransitivity equalitySymmetry lemma_by_obid applyEquality lambdaEquality independent_isectElimination independent_functionElimination natural_numberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].    (\mdownarrow{}per-class(T;a))



Date html generated: 2016_05_13-PM-04_12_34
Last ObjectModification: 2016_01_14-PM-07_29_30

Theory : subtype_1


Home Index