Nuprl Lemma : squash-union-is-union-squash
∀[A:Type]. ∀[P:A ⟶ Type].  ↓⋃a:A.P[a] ≡ ⋃a:A.(↓P[a])
Proof
Definitions occuring in Statement : 
ext-eq: A ≡ B
, 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
squash: ↓T
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
Lemmas referenced : 
tunion_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
hypothesis, 
because_Cache, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
imageElimination, 
imageMemberEquality, 
dependent_pairEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
rename
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  Type].    \mdownarrow{}\mcup{}a:A.P[a]  \mequiv{}  \mcup{}a:A.(\mdownarrow{}P[a])
Date html generated:
2016_05_13-PM-04_14_11
Last ObjectModification:
2016_01_14-PM-07_29_05
Theory : subtype_1
Home
Index