Nuprl Lemma : squash-union-is-union-squash

[A:Type]. ∀[P:A ⟶ Type].  ↓⋃a:A.P[a] ≡ ⋃a:A.(↓P[a])


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B tunion: x:A.B[x] uall: [x:A]. B[x] so_apply: x[s] squash: T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: squash: T tunion: x:A.B[x] pi2: snd(t)
Lemmas referenced :  tunion_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule applyEquality hypothesis because_Cache productElimination independent_pairEquality axiomEquality functionEquality cumulativity universeEquality isect_memberEquality imageElimination imageMemberEquality dependent_pairEquality baseClosed equalityTransitivity equalitySymmetry rename

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  Type].    \mdownarrow{}\mcup{}a:A.P[a]  \mequiv{}  \mcup{}a:A.(\mdownarrow{}P[a])



Date html generated: 2016_05_13-PM-04_14_11
Last ObjectModification: 2016_01_14-PM-07_29_05

Theory : subtype_1


Home Index