Nuprl Lemma : strong-subtype-dep-product
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[C:Type]. ∀[D:C ⟶ Type].
  (strong-subtype(a:A × B[a];c:C × D[c])) supposing ((∀a:A. strong-subtype(B[a];D[a])) and strong-subtype(A;C))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
label: ...$L... t
Lemmas referenced : 
strong-subtype-implies, 
strong-subtype_witness, 
strong-subtype_wf, 
istype-universe, 
pi1_wf, 
pi2_wf, 
subtype_rel_product
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productEquality, 
applyEquality, 
sqequalRule, 
Error :functionIsType, 
Error :universeIsType, 
productElimination, 
Error :isect_memberEquality_alt, 
because_Cache, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
independent_pairFormation, 
lemma_by_obid, 
lambdaEquality, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
Error :lambdaEquality_alt, 
Error :setIsType, 
Error :productIsType, 
Error :equalityIstype, 
setElimination, 
rename, 
Error :dependent_set_memberEquality_alt, 
Error :dependent_pairFormation_alt, 
applyLambdaEquality, 
Error :dependent_pairEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[C:Type].  \mforall{}[D:C  {}\mrightarrow{}  Type].
    (strong-subtype(a:A  \mtimes{}  B[a];c:C  \mtimes{}  D[c]))  supposing 
          ((\mforall{}a:A.  strong-subtype(B[a];D[a]))  and 
          strong-subtype(A;C))
Date html generated:
2019_06_20-PM-00_27_57
Last ObjectModification:
2018_12_16-PM-00_26_22
Theory : subtype_1
Home
Index