Nuprl Lemma : tuple2_lemma

F:Top. (tuple(2;x.F[x]) ~ <F[0], F[1]>)


Proof




Definitions occuring in Statement :  tuple: tuple(n;i.F[i]) top: Top so_apply: x[s] all: x:A. B[x] pair: <a, b> natural_number: $n sqequal: t
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] tuple: tuple(n;i.F[i]) upto: upto(n) from-upto: [n, m) lt_int: i <j ifthenelse: if then else fi  btrue: tt bfalse: ff top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  map_cons_lemma istype-void map_nil_lemma list_ind_cons_lemma null_cons_lemma null_nil_lemma list_ind_nil_lemma top_wf
Rules used in proof :  lemma_by_obid hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalRule callbyvalueReduce sqleReflexivity introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :isect_memberEquality_alt,  voidElimination

Latex:
\mforall{}F:Top.  (tuple(2;x.F[x])  \msim{}  <F[0],  F[1]>)



Date html generated: 2019_06_20-PM-02_03_09
Last ObjectModification: 2019_01_29-AM-10_31_40

Theory : tuples


Home Index