Nuprl Lemma : decide-spread-sq2
∀[x:Top × Top]. ∀[f,g,h:Top].
  (case let a,b = x in inr f[a;b]  of inl(z) => g[z] | inr(z) => h[z] ~ h[f[fst(x);snd(x)]])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
spread: spread def, 
product: x:A × B[x]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
inr: inr x 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
productElimination, 
thin, 
sqequalRule, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
productEquality
Latex:
\mforall{}[x:Top  \mtimes{}  Top].  \mforall{}[f,g,h:Top].
    (case  let  a,b  =  x  in  inr  f[a;b]    of  inl(z)  =>  g[z]  |  inr(z)  =>  h[z]  \msim{}  h[f[fst(x);snd(x)]])
Date html generated:
2018_05_21-PM-00_01_16
Last ObjectModification:
2018_01_28-PM-02_24_25
Theory : union
Home
Index