Nuprl Lemma : wfForm_wf
∀[C:Type]. ∀[f:Form(C)]. (wfForm(f) ∈ 𝔹)
Proof
Definitions occuring in Statement :
wfForm: wfForm(f)
,
Form: Form(C)
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
wfForm: wfForm(f)
Lemmas referenced :
wfFormAux_wf,
termForm_wf,
Form_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
applyEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[C:Type]. \mforall{}[f:Form(C)]. (wfForm(f) \mmember{} \mBbbB{})
Date html generated:
2018_05_21-PM-11_26_57
Last ObjectModification:
2017_10_10-PM-05_07_24
Theory : PZF
Home
Index