Nuprl Lemma : bag-accum-single

[init,f,x:Top].  (bag-accum(v,x.f[v;x];init;{x}) f[init;x])


Proof




Definitions occuring in Statement :  bag-accum: bag-accum(v,x.f[v; x];init;bs) single-bag: {x} uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T single-bag: {x} bag-accum: bag-accum(v,x.f[v; x];init;bs) all: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_cons_lemma list_accum_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[init,f,x:Top].    (bag-accum(v,x.f[v;x];init;\{x\})  \msim{}  f[init;x])



Date html generated: 2016_05_15-PM-02_30_07
Last ObjectModification: 2015_12_27-AM-09_49_04

Theory : bags


Home Index