Nuprl Lemma : bag-accum-single
∀[init,f,x:Top].  (bag-accum(v,x.f[v;x];init;{x}) ~ f[init;x])
Proof
Definitions occuring in Statement : 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
single-bag: {x}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
single-bag: {x}
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[init,f,x:Top].    (bag-accum(v,x.f[v;x];init;\{x\})  \msim{}  f[init;x])
Date html generated:
2016_05_15-PM-02_30_07
Last ObjectModification:
2015_12_27-AM-09_49_04
Theory : bags
Home
Index