Nuprl Lemma : bag-combine-append-empty

[f,bs:Top].  (⋃x∈bs.f[x] [] ~ ⋃x∈bs.f[x])


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] append: as bs nil: [] uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-combine: x∈bs.f[x] bag-map: bag-map(f;bs) bag-union: bag-union(bbs) concat: concat(ll) all: x:A. B[x] top: Top
Lemmas referenced :  reduce_nil_lemma concat_append map-append-empty top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality sqequalAxiom because_Cache

Latex:
\mforall{}[f,bs:Top].    (\mcup{}x\mmember{}bs.f[x]  @  []  \msim{}  \mcup{}x\mmember{}bs.f[x])



Date html generated: 2016_05_15-PM-03_08_49
Last ObjectModification: 2015_12_27-AM-09_26_13

Theory : bags


Home Index