Nuprl Lemma : map-append-empty

[f,b:Top].  (map(f;b) [] map(f;b))


Proof




Definitions occuring in Statement :  map: map(f;as) append: as bs nil: [] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T map: map(f;as) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a strict1: strict1(F) and: P ∧ Q all: x:A. B[x] implies:  Q append: as bs list_ind: list_ind has-value: (a)↓ prop: or: P ∨ Q squash: T guard: {T} so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] top: Top
Lemmas referenced :  top_wf list_ind_nil_lemma sqle_wf_base list_ind_cons_lemma is-exception_wf base_wf has-value_wf_base sqequal-list_ind
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin lemma_by_obid sqequalHypSubstitution isectElimination baseClosed independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases inlFormation imageMemberEquality imageElimination exceptionSqequal inrFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality divergentSqle sqleRule sqleReflexivity because_Cache sqequalAxiom

Latex:
\mforall{}[f,b:Top].    (map(f;b)  @  []  \msim{}  map(f;b))



Date html generated: 2016_05_15-PM-02_07_46
Last ObjectModification: 2016_01_15-PM-10_23_52

Theory : untyped!computation


Home Index