Nuprl Lemma : bag-combine-assoc
∀[f,g:Top]. ∀[bs:bag(Top)].  (⋃y∈⋃x∈bs.f[x].g[y] ~ ⋃x∈bs.⋃y∈f[x].g[y])
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-map: bag-map(f;bs)
, 
bag-union: bag-union(bbs)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
concat-map-assoc, 
bag-subtype-list, 
bag_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
applyEquality, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[f,g:Top].  \mforall{}[bs:bag(Top)].    (\mcup{}y\mmember{}\mcup{}x\mmember{}bs.f[x].g[y]  \msim{}  \mcup{}x\mmember{}bs.\mcup{}y\mmember{}f[x].g[y])
Date html generated:
2016_05_15-PM-02_28_09
Last ObjectModification:
2015_12_27-AM-09_50_58
Theory : bags
Home
Index