Nuprl Lemma : bag-combine-cons-left
∀[b,a,f:Top].  (⋃x∈a.b.f[x] ~ f[a] + ⋃x∈b.f[x])
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
bag-append: as + bs
, 
cons-bag: x.b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-combine: ⋃x∈bs.f[x]
, 
top: Top
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bag-map-cons, 
bag_union_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[b,a,f:Top].    (\mcup{}x\mmember{}a.b.f[x]  \msim{}  f[a]  +  \mcup{}x\mmember{}b.f[x])
Date html generated:
2016_05_15-PM-02_28_41
Last ObjectModification:
2015_12_27-AM-09_50_00
Theory : bags
Home
Index