Nuprl Lemma : bag-combine-empty-left
∀[f:Top]. (⋃x∈{}.f[x] ~ {})
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
empty-bag: {}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
bag_combine_empty_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[f:Top].  (\mcup{}x\mmember{}\{\}.f[x]  \msim{}  \{\})
Date html generated:
2016_05_15-PM-02_28_20
Last ObjectModification:
2015_12_27-AM-09_50_27
Theory : bags
Home
Index