Nuprl Lemma : bag-combine-empty-left

[f:Top]. (⋃x∈{}.f[x] {})


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] empty-bag: {} uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  bag_combine_empty_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom

Latex:
\mforall{}[f:Top].  (\mcup{}x\mmember{}\{\}.f[x]  \msim{}  \{\})



Date html generated: 2016_05_15-PM-02_28_20
Last ObjectModification: 2015_12_27-AM-09_50_27

Theory : bags


Home Index