Nuprl Lemma : bag-filter-wf3
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  ([x∈bs|p[x]] ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf, 
bag_wf, 
bool_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    ([x\mmember{}bs|p[x]]  \mmember{}  bag(T))
Date html generated:
2016_05_15-PM-02_23_00
Last ObjectModification:
2015_12_27-AM-09_54_25
Theory : bags
Home
Index