Nuprl Lemma : bag-filter-wf3

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  ([x∈bs|p[x]] ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag: bag(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  bag-filter_wf subtype_rel_bag assert_wf bag_wf bool_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality setEquality independent_isectElimination setElimination rename because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    ([x\mmember{}bs|p[x]]  \mmember{}  bag(T))



Date html generated: 2016_05_15-PM-02_23_00
Last ObjectModification: 2015_12_27-AM-09_54_25

Theory : bags


Home Index