Nuprl Lemma : bag-map-append-empty
∀[f,b:Top].  (bag-map(f;b) + {} ~ bag-map(f;b))
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
bag-map: bag-map(f;bs)
, 
empty-bag: {}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bag-map: bag-map(f;bs)
, 
empty-bag: {}
, 
bag-append: as + bs
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
map-append-empty, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[f,b:Top].    (bag-map(f;b)  +  \{\}  \msim{}  bag-map(f;b))
Date html generated:
2016_05_15-PM-03_08_43
Last ObjectModification:
2015_12_27-AM-09_26_25
Theory : bags
Home
Index