Nuprl Lemma : bag-summation-single-sq
∀[add,zero,f,a:Top].  (Σ(x∈{a}). f[x] ~ add f[a] zero)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x], 
single-bag: {x}, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
single-bag: {x}, 
bag-summation: Σ(x∈b). f[x], 
bag-accum: bag-accum(v,x.f[v; x];init;bs), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
list_accum_cons_lemma, 
istype-void, 
list_accum_nil_lemma, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isect_memberFormation_alt, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
isectElimination, 
isectIsTypeImplies
Latex:
\mforall{}[add,zero,f,a:Top].    (\mSigma{}(x\mmember{}\{a\}).  f[x]  \msim{}  add  f[a]  zero)
Date html generated:
2019_10_15-AM-11_00_38
Last ObjectModification:
2019_08_13-PM-00_00_52
Theory : bags
Home
Index