Nuprl Lemma : bag-union-cons
∀[b,a:Top].  (bag-union(a.b) ~ a + bag-union(b))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
bag-append: as + bs
, 
cons-bag: x.b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bag_union_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
because_Cache
Latex:
\mforall{}[b,a:Top].    (bag-union(a.b)  \msim{}  a  +  bag-union(b))
Date html generated:
2016_05_15-PM-02_27_44
Last ObjectModification:
2015_12_27-AM-09_51_13
Theory : bags
Home
Index