Nuprl Lemma : bag_all-empty

[f:Top]. (bag_all({};f) tt)


Proof




Definitions occuring in Statement :  bag_all: bag_all(b;f) empty-bag: {} btrue: tt uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  empty-bag: {} bag_all: bag_all(b;f) bag-accum: bag-accum(v,x.f[v; x];init;bs) all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uall: [x:A]. B[x]
Lemmas referenced :  list_accum_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[f:Top].  (bag\_all(\{\};f)  \msim{}  tt)



Date html generated: 2016_05_15-PM-02_34_37
Last ObjectModification: 2015_12_27-AM-09_46_40

Theory : bags


Home Index