Nuprl Lemma : bag_all-empty
∀[f:Top]. (bag_all({};f) ~ tt)
Proof
Definitions occuring in Statement : 
bag_all: bag_all(b;f)
, 
empty-bag: {}
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
empty-bag: {}
, 
bag_all: bag_all(b;f)
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
list_accum_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[f:Top].  (bag\_all(\{\};f)  \msim{}  tt)
Date html generated:
2016_05_15-PM-02_34_37
Last ObjectModification:
2015_12_27-AM-09_46_40
Theory : bags
Home
Index