Nuprl Lemma : bag_all-map

[b,f,g:Top].  (bag_all(bag-map(g;b);f) bag_all(b;f g))


Proof




Definitions occuring in Statement :  bag_all: bag_all(b;f) bag-map: bag-map(f;bs) compose: g uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag_all: bag_all(b;f) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] compose: g so_apply: x[s]
Lemmas referenced :  bag-accum-map top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom because_Cache

Latex:
\mforall{}[b,f,g:Top].    (bag\_all(bag-map(g;b);f)  \msim{}  bag\_all(b;f  o  g))



Date html generated: 2016_05_15-PM-02_34_43
Last ObjectModification: 2015_12_27-AM-09_46_37

Theory : bags


Home Index