Nuprl Lemma : bag_all-map
∀[b,f,g:Top].  (bag_all(bag-map(g;b);f) ~ bag_all(b;f o g))
Proof
Definitions occuring in Statement : 
bag_all: bag_all(b;f)
, 
bag-map: bag-map(f;bs)
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag_all: bag_all(b;f)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
compose: f o g
, 
so_apply: x[s]
Lemmas referenced : 
bag-accum-map, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[b,f,g:Top].    (bag\_all(bag-map(g;b);f)  \msim{}  bag\_all(b;f  o  g))
Date html generated:
2016_05_15-PM-02_34_43
Last ObjectModification:
2015_12_27-AM-09_46_37
Theory : bags
Home
Index