Nuprl Lemma : bag_filter_cons_lemma

p,v,u:Top.  ([x∈u.v|p[x]] if p[u] then u.[x∈v|p[x]] else [x∈v|p[x]] fi )


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] cons-bag: x.b ifthenelse: if then else fi  top: Top so_apply: x[s] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  cons-bag: x.b bag-filter: [x∈b|p[x]] all: x:A. B[x] member: t ∈ T top: Top
Lemmas referenced :  filter_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation

Latex:
\mforall{}p,v,u:Top.    ([x\mmember{}u.v|p[x]]  \msim{}  if  p[u]  then  u.[x\mmember{}v|p[x]]  else  [x\mmember{}v|p[x]]  fi  )



Date html generated: 2016_05_15-PM-02_23_27
Last ObjectModification: 2015_12_27-AM-09_54_06

Theory : bags


Home Index