Nuprl Lemma : bag_filter_cons_lemma
∀p,v,u:Top.  ([x∈u.v|p[x]] ~ if p[u] then u.[x∈v|p[x]] else [x∈v|p[x]] fi )
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]]
, 
cons-bag: x.b
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cons-bag: x.b
, 
bag-filter: [x∈b|p[x]]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
filter_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation
Latex:
\mforall{}p,v,u:Top.    ([x\mmember{}u.v|p[x]]  \msim{}  if  p[u]  then  u.[x\mmember{}v|p[x]]  else  [x\mmember{}v|p[x]]  fi  )
Date html generated:
2016_05_15-PM-02_23_27
Last ObjectModification:
2015_12_27-AM-09_54_06
Theory : bags
Home
Index