Nuprl Lemma : lifting-bag-combine-decide-name_eq
∀[a,b,F,G,f:Top].
  (⋃b∈case name_eq(a;b) of inl(x) => F[x] | inr(x) => G[x].f[b] ~ case name_eq(a;b)
   of inl(x) =>
   ⋃b∈F[x].f[b]
   | inr(x) =>
   ⋃b∈G[x].f[b])
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
name_eq: name_eq(x;y)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
lifting-bag-combine-decide, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[a,b,F,G,f:Top].
    (\mcup{}b\mmember{}case  name\_eq(a;b)  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x].f[b]  \msim{}  case  name\_eq(a;b)
      of  inl(x)  =>
      \mcup{}b\mmember{}F[x].f[b]
      |  inr(x)  =>
      \mcup{}b\mmember{}G[x].f[b])
Date html generated:
2016_05_15-PM-03_10_20
Last ObjectModification:
2015_12_27-AM-09_25_11
Theory : bags
Home
Index