Nuprl Lemma : lifting-bag-combine-decide
∀[a,F,G,f:Top].
  (⋃b∈case a of inl(x) => F[x] | inr(x) => G[x].f[b] ~ case a of inl(x) => ⋃b∈F[x].f[b] | inr(x) => ⋃b∈G[x].f[b])
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
uimplies: b supposing a
Lemmas referenced : 
lifting-strict-decide, 
top_wf, 
strict4-bag-combine
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
thin, 
baseClosed, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
independent_isectElimination
Latex:
\mforall{}[a,F,G,f:Top].
    (\mcup{}b\mmember{}case  a  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x].f[b]  \msim{}  case  a
      of  inl(x)  =>
      \mcup{}b\mmember{}F[x].f[b]
      |  inr(x)  =>
      \mcup{}b\mmember{}G[x].f[b])
Date html generated:
2016_05_15-PM-03_09_47
Last ObjectModification:
2016_01_16-AM-08_33_50
Theory : bags
Home
Index