Nuprl Lemma : single-bag-append-nil
∀[a:Top]. ([a] + [] ~ [a])
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
empty-bag: {}
Lemmas referenced : 
bag-append-empty, 
cons_wf, 
top_wf, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalAxiom
Latex:
\mforall{}[a:Top].  ([a]  +  []  \msim{}  [a])
Date html generated:
2016_05_15-PM-03_09_09
Last ObjectModification:
2015_12_27-AM-09_26_06
Theory : bags
Home
Index