Step
*
2
1
1
1
1
1
of Lemma
bag-member-parts'
1. T : Type
2. valueall-type(T)
3. eq : EqDecider(T)
4. x : T
5. bs : bag(T)
6. ¬(bs = {} ∈ bag(T))
7. L : bag(T) List+
8. v : bag(T) List+
9. (bag-union(v) = bs ∈ bag(T)) ∧ (∀x∈v.¬(x = {} ∈ bag(T)))
10. L = [{} / v] ∈ bag(T) List+
⊢ (¬x ↓∈ hd(L)) ∧ (∀x:bag(T). ((x ∈ tl(L))
⇒ (¬(x = {} ∈ bag(T))))) ∧ (bag-union(L) = bs ∈ bag(T))
BY
{ xxxD -2xxx }
1
1. T : Type
2. valueall-type(T)
3. eq : EqDecider(T)
4. x : T
5. bs : bag(T)
6. ¬(bs = {} ∈ bag(T))
7. L : bag(T) List+
8. v : bag(T) List+
9. bag-union(v) = bs ∈ bag(T)
10. (∀x∈v.¬(x = {} ∈ bag(T)))
11. L = [{} / v] ∈ bag(T) List+
⊢ (¬x ↓∈ hd(L)) ∧ (∀x:bag(T). ((x ∈ tl(L))
⇒ (¬(x = {} ∈ bag(T))))) ∧ (bag-union(L) = bs ∈ bag(T))
Latex:
Latex:
1. T : Type
2. valueall-type(T)
3. eq : EqDecider(T)
4. x : T
5. bs : bag(T)
6. \mneg{}(bs = \{\})
7. L : bag(T) List\msupplus{}
8. v : bag(T) List\msupplus{}
9. (bag-union(v) = bs) \mwedge{} (\mforall{}x\mmember{}v.\mneg{}(x = \{\}))
10. L = [\{\} / v]
\mvdash{} (\mneg{}x \mdownarrow{}\mmember{} hd(L)) \mwedge{} (\mforall{}x:bag(T). ((x \mmember{} tl(L)) {}\mRightarrow{} (\mneg{}(x = \{\})))) \mwedge{} (bag-union(L) = bs)
By
Latex:
xxxD -2xxx
Home
Index