Step
*
1
of Lemma
wfd-subtrees_wf
1. A : Type
2. co-w(A) ≡ Unit + (A ⟶ co-w(A))
3. y : A ⟶ co-w(A)
4. ¬False
5. ∀p:ℕ ⟶ A. w-bars(inr y ;p)
6. a : A
7. p : ℕ ⟶ A
⊢ w-bars(y a;p)
BY
{ xxx((InstHyp [⌜λn.if (n =z 0) then a else p (n - 1) fi ⌝] (-3)⋅ THENA Auto)
THEN RepeatFor 2 (ParallelLast)
THEN ExRepD
THEN xxxCaseNat 0 `n'xxx)xxx }
1
1. A : Type
2. co-w(A) ≡ Unit + (A ⟶ co-w(A))
3. y : A ⟶ co-w(A)
4. ¬False
5. ∀p:ℕ ⟶ A. w-bars(inr y ;p)
6. a : A
7. p : ℕ ⟶ A
8. n : ℕ
9. ↑co-w-null(inr y @map(λn.if (n =z 0) then a else p (n - 1) fi ;upto(n)))
10. n = 0 ∈ ℤ
⊢ ∃n:ℕ. (↑co-w-null(y a@map(p;upto(n))))
2
1. A : Type
2. co-w(A) ≡ Unit + (A ⟶ co-w(A))
3. y : A ⟶ co-w(A)
4. ¬False
5. ∀p:ℕ ⟶ A. w-bars(inr y ;p)
6. a : A
7. p : ℕ ⟶ A
8. n : ℕ
9. ↑co-w-null(inr y @map(λn.if (n =z 0) then a else p (n - 1) fi ;upto(n)))
10. ¬(n = 0 ∈ ℤ)
⊢ ∃n:ℕ. (↑co-w-null(y a@map(p;upto(n))))
Latex:
Latex:
1. A : Type
2. co-w(A) \mequiv{} Unit + (A {}\mrightarrow{} co-w(A))
3. y : A {}\mrightarrow{} co-w(A)
4. \mneg{}False
5. \mforall{}p:\mBbbN{} {}\mrightarrow{} A. w-bars(inr y ;p)
6. a : A
7. p : \mBbbN{} {}\mrightarrow{} A
\mvdash{} w-bars(y a;p)
By
Latex:
xxx((InstHyp [\mkleeneopen{}\mlambda{}n.if (n =\msubz{} 0) then a else p (n - 1) fi \mkleeneclose{}] (-3)\mcdot{} THENA Auto)
THEN RepeatFor 2 (ParallelLast)
THEN ExRepD
THEN xxxCaseNat 0 `n'xxx)xxx
Home
Index