Step
*
1
2
of Lemma
wfd-subtrees_wf
1. A : Type
2. co-w(A) ≡ Unit + (A ⟶ co-w(A))
3. y : A ⟶ co-w(A)
4. ¬False
5. ∀p:ℕ ⟶ A. w-bars(inr y ;p)
6. a : A
7. p : ℕ ⟶ A
8. n : ℕ
9. ↑co-w-null(inr y @map(λn.if (n =z 0) then a else p (n - 1) fi ;upto(n)))
10. ¬(n = 0 ∈ ℤ)
⊢ ∃n:ℕ. (↑co-w-null(y a@map(p;upto(n))))
BY
{ (With ⌜n - 1⌝ (D 0)⋅ THEN Auto) }
1
1. A : Type
2. co-w(A) ≡ Unit + (A ⟶ co-w(A))
3. y : A ⟶ co-w(A)
4. ¬False
5. ∀p:ℕ ⟶ A. w-bars(inr y ;p)
6. a : A
7. p : ℕ ⟶ A
8. n : ℕ
9. ↑co-w-null(inr y @map(λn.if (n =z 0) then a else p (n - 1) fi ;upto(n)))
10. ¬(n = 0 ∈ ℤ)
⊢ ↑co-w-null(y a@map(p;upto(n - 1)))
Latex:
Latex:
1. A : Type
2. co-w(A) \mequiv{} Unit + (A {}\mrightarrow{} co-w(A))
3. y : A {}\mrightarrow{} co-w(A)
4. \mneg{}False
5. \mforall{}p:\mBbbN{} {}\mrightarrow{} A. w-bars(inr y ;p)
6. a : A
7. p : \mBbbN{} {}\mrightarrow{} A
8. n : \mBbbN{}
9. \muparrow{}co-w-null(inr y @map(\mlambda{}n.if (n =\msubz{} 0) then a else p (n - 1) fi ;upto(n)))
10. \mneg{}(n = 0)
\mvdash{} \mexists{}n:\mBbbN{}. (\muparrow{}co-w-null(y a@map(p;upto(n))))
By
Latex:
(With \mkleeneopen{}n - 1\mkleeneclose{} (D 0)\mcdot{} THEN Auto)
Home
Index