Nuprl Lemma : fix-of-add
∀[z:Base]. (fix((λx.(x + z))) ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
fix: fix(F)
, 
lambda: λx.A[x]
, 
add: n + m
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
base_wf, 
strictness-add-left, 
is-strict-fun, 
fix_strict_diverge
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[z:Base].  (fix((\mlambda{}x.(x  +  z)))  \msim{}  \mbot{})
Date html generated:
2016_05_15-PM-10_04_56
Last ObjectModification:
2016_01_16-AM-08_28_12
Theory : bar!type
Home
Index