Nuprl Lemma : no-value-bottom-base

[x:Base]. ~ ⊥ supposing (x)↓) ∧ is-exception(x))


Proof




Definitions occuring in Statement :  bottom: has-value: (a)↓ is-exception: is-exception(t) uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q not: ¬A implies:  Q false: False top: Top prop:
Lemmas referenced :  has-value_wf_base is-exception_wf bottom-sqle and_wf not_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle divergentSqle sqequalHypSubstitution productElimination thin independent_functionElimination hypothesis voidElimination lemma_by_obid isectElimination hypothesisEquality isect_memberEquality voidEquality sqequalAxiom sqequalRule because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:Base].  x  \msim{}  \mbot{}  supposing  (\mneg{}(x)\mdownarrow{})  \mwedge{}  (\mneg{}is-exception(x))



Date html generated: 2016_05_15-PM-10_04_10
Last ObjectModification: 2015_12_27-PM-05_16_55

Theory : bar!type


Home Index