Nuprl Lemma : subtype_barSqtype_base

T:Type. ((T ⊆Base)  (bar(T) ⊆Base))


Proof




Definitions occuring in Statement :  bar: bar(T) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q bar: bar(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  base_wf subtype_rel_wf subtype_partial_sqtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis isectElimination universeEquality

Latex:
\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (bar(T)  \msubseteq{}r  Base))



Date html generated: 2016_05_15-PM-10_03_48
Last ObjectModification: 2016_01_05-PM-06_24_37

Theory : bar!type


Home Index