Nuprl Lemma : subtype_barSqtype_base
∀T:Type. ((T ⊆r Base) 
⇒ (bar(T) ⊆r Base))
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bar: bar(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
base_wf, 
subtype_rel_wf, 
subtype_partial_sqtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
universeEquality
Latex:
\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (bar(T)  \msubseteq{}r  Base))
Date html generated:
2016_05_15-PM-10_03_48
Last ObjectModification:
2016_01_05-PM-06_24_37
Theory : bar!type
Home
Index