Nuprl Lemma : Russell-property
¬(Russell ∈ Russell)
Proof
Definitions occuring in Statement :
Russell: Russell
,
not: ¬A
,
member: t ∈ T
Definitions unfolded in proof :
not: ¬A
,
implies: P
⇒ Q
,
member: t ∈ T
,
Russell: Russell
,
squash: ↓T
,
false: False
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
equal-wf-base,
Russell_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
hypothesis,
addLevel,
sqequalHypSubstitution,
sqequalRule,
applyEquality,
lambdaEquality,
setElimination,
thin,
rename,
imageMemberEquality,
hypothesisEquality,
baseClosed,
equalityUniverse,
levelHypothesis,
introduction,
because_Cache,
imageElimination,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
voidElimination,
lemma_by_obid,
instantiate,
isectElimination
Latex:
\mneg{}(Russell \mmember{} Russell)
Date html generated:
2016_05_15-PM-01_43_54
Last ObjectModification:
2016_01_15-PM-11_17_29
Theory : basic
Home
Index