Nuprl Lemma : Russell-property
¬(Russell ∈ Russell)
Proof
Definitions occuring in Statement : 
Russell: Russell
, 
not: ¬A
, 
member: t ∈ T
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
Russell: Russell
, 
squash: ↓T
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
equal-wf-base, 
Russell_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
setElimination, 
thin, 
rename, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
equalityUniverse, 
levelHypothesis, 
introduction, 
because_Cache, 
imageElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
lemma_by_obid, 
instantiate, 
isectElimination
Latex:
\mneg{}(Russell  \mmember{}  Russell)
Date html generated:
2016_05_15-PM-01_43_54
Last ObjectModification:
2016_01_15-PM-11_17_29
Theory : basic
Home
Index