Nuprl Lemma : Russell_wf
Russell ∈ 𝕌'
Proof
Definitions occuring in Statement : 
Russell: Russell
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
Russell: Russell
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
isect2_wf, 
base_wf, 
not_wf, 
isect2_subtype_rel, 
isect2_subtype_rel2, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setEquality, 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
cumulativity, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
applyEquality, 
because_Cache
Latex:
Russell  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_15-PM-01_43_52
Last ObjectModification:
2015_12_27-AM-00_10_54
Theory : basic
Home
Index