Nuprl Lemma : cand_functionality_wrt_iff
∀[a1,a2,b1,b2:ℙ].  ((a1 
⇐⇒ a2) 
⇒ (b1 
⇐⇒ b2) 
⇒ (a1 c∧ b1 
⇐⇒ a2 c∧ b2))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
productEquality, 
cumulativity, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}[a1,a2,b1,b2:\mBbbP{}].    ((a1  \mLeftarrow{}{}\mRightarrow{}  a2)  {}\mRightarrow{}  (b1  \mLeftarrow{}{}\mRightarrow{}  b2)  {}\mRightarrow{}  (a1  c\mwedge{}  b1  \mLeftarrow{}{}\mRightarrow{}  a2  c\mwedge{}  b2))
Date html generated:
2019_10_15-AM-10_46_37
Last ObjectModification:
2018_09_27-AM-09_41_12
Theory : basic
Home
Index