Nuprl Lemma : cand_functionality_wrt_iff

[a1,a2,b1,b2:ℙ].  ((a1 ⇐⇒ a2)  (b1 ⇐⇒ b2)  (a1 c∧ b1 ⇐⇒ a2 c∧ b2))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] cand: c∧ B prop: iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation productEquality cumulativity hypothesisEquality cut introduction extract_by_obid isectElimination hypothesis inhabitedIsType universeIsType universeEquality independent_functionElimination

Latex:
\mforall{}[a1,a2,b1,b2:\mBbbP{}].    ((a1  \mLeftarrow{}{}\mRightarrow{}  a2)  {}\mRightarrow{}  (b1  \mLeftarrow{}{}\mRightarrow{}  b2)  {}\mRightarrow{}  (a1  c\mwedge{}  b1  \mLeftarrow{}{}\mRightarrow{}  a2  c\mwedge{}  b2))



Date html generated: 2019_10_15-AM-10_46_37
Last ObjectModification: 2018_09_27-AM-09_41_12

Theory : basic


Home Index