Nuprl Lemma : Rtrans_wf

K:dl_KS. ∀r,s,t:worlds(K).  (Rtrans(K;r;s;t) ∈ rRs  sRt  rRt)


Proof




Definitions occuring in Statement :  Rtrans: Rtrans(k;r;s;t) dl_KS: dl_KS KrRel: sRt worlds: worlds(k) all: x:A. B[x] implies:  Q member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T Rtrans: Rtrans(k;r;s;t) dl_KS: dl_KS record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] prop: implies:  Q
Lemmas referenced :  subtype_rel_self worlds_wf KrRel_wf nat_wf atmFrc_prop_wf dl_KS_subtype dl_KS_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality introduction extract_by_obid isectElimination functionEquality hypothesisEquality functionExtensionality inhabitedIsType universeIsType

Latex:
\mforall{}K:dl\_KS.  \mforall{}r,s,t:worlds(K).    (Rtrans(K;r;s;t)  \mmember{}  rRs  {}\mRightarrow{}  sRt  {}\mRightarrow{}  rRt)



Date html generated: 2020_05_20-AM-09_01_36
Last ObjectModification: 2019_11_27-PM-02_24_27

Theory : dynamic!logic


Home Index