Nuprl Lemma : Rtrans_wf
∀K:dl_KS. ∀r,s,t:worlds(K).  (Rtrans(K;r;s;t) ∈ rRs 
⇒ sRt 
⇒ rRt)
Proof
Definitions occuring in Statement : 
Rtrans: Rtrans(k;r;s;t)
, 
dl_KS: dl_KS
, 
KrRel: sRt
, 
worlds: worlds(k)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
Rtrans: Rtrans(k;r;s;t)
, 
dl_KS: dl_KS
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
subtype_rel_self, 
worlds_wf, 
KrRel_wf, 
nat_wf, 
atmFrc_prop_wf, 
dl_KS_subtype, 
dl_KS_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
hypothesisEquality, 
functionExtensionality, 
inhabitedIsType, 
universeIsType
Latex:
\mforall{}K:dl\_KS.  \mforall{}r,s,t:worlds(K).    (Rtrans(K;r;s;t)  \mmember{}  rRs  {}\mRightarrow{}  sRt  {}\mRightarrow{}  rRt)
Date html generated:
2020_05_20-AM-09_01_36
Last ObjectModification:
2019_11_27-PM-02_24_27
Theory : dynamic!logic
Home
Index