Nuprl Lemma : atmFrcPersistent_wf

K:dl_KS. ∀i:worlds(K). ∀a:ℕ.
  (atmFrcPersistent(K;i;a) ∈ atmFrc_prop(K;a;i)  (∀j:worlds(K). (iRj  atmFrc_prop(K;a;j))))


Proof




Definitions occuring in Statement :  atmFrcPersistent: atmFrcPersistent(k;i;a) dl_KS: dl_KS atmFrc_prop: atmFrc_prop(k;a;s) KrRel: sRt worlds: worlds(k) nat: all: x:A. B[x] implies:  Q member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T atmFrcPersistent: atmFrcPersistent(k;i;a) dl_KS: dl_KS record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] prop: implies:  Q
Lemmas referenced :  subtype_rel_self worlds_wf KrRel_wf nat_wf atmFrc_prop_wf istype-nat dl_KS_subtype dl_KS_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality introduction extract_by_obid isectElimination functionEquality hypothesisEquality functionExtensionality universeIsType

Latex:
\mforall{}K:dl\_KS.  \mforall{}i:worlds(K).  \mforall{}a:\mBbbN{}.
    (atmFrcPersistent(K;i;a)  \mmember{}  atmFrc\_prop(K;a;i)  {}\mRightarrow{}  (\mforall{}j:worlds(K).  (iRj  {}\mRightarrow{}  atmFrc\_prop(K;a;j))))



Date html generated: 2020_05_20-AM-09_01_39
Last ObjectModification: 2019_11_27-PM-02_10_30

Theory : dynamic!logic


Home Index