Nuprl Lemma : dl-aprop?_wf
∀[x:Prop]. (dl-aprop?(x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
dl-aprop?: dl-aprop?(x)
, 
dl-prop: Prop
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dl-aprop?: dl-aprop?(x)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
eq_atom_wf, 
dl-label_wf, 
dl-prop-obj_wf, 
dl-prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
tokenEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType
Latex:
\mforall{}[x:Prop].  (dl-aprop?(x)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_15-AM-11_40_19
Last ObjectModification:
2019_03_26-AM-11_24_37
Theory : dynamic!logic
Home
Index