Nuprl Lemma : dlo_eq_wf
∀[a,b:dl-Obj()].  (dlo_eq(a;b) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
dlo_eq: dlo_eq(a;b)
, 
dl-Obj: dl-Obj()
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dlo_eq: dlo_eq(a;b)
Lemmas referenced : 
dlo-eq_wf, 
dl-Obj_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[a,b:dl-Obj()].    (dlo\_eq(a;b)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_15-AM-11_42_48
Last ObjectModification:
2019_04_04-PM-05_29_32
Theory : dynamic!logic
Home
Index