Nuprl Lemma : co-list-cons_wf

[T:Type]. ∀[h:T]. ∀[t:colist(T)].  (co-list-cons(h;t) ∈ colist(T))


Proof




Definitions occuring in Statement :  co-list-cons: co-list-cons(h;t) colist: colist(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-list-cons: co-list-cons(h;t) subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  subtype_rel_b-union-right unit_wf2 colist_wf istype-universe colist-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule independent_pairEquality hypothesisEquality hypothesis applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin productEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[h:T].  \mforall{}[t:colist(T)].    (co-list-cons(h;t)  \mmember{}  colist(T))



Date html generated: 2019_10_16-AM-11_38_14
Last ObjectModification: 2019_06_26-PM-04_07_04

Theory : eval!all


Home Index