Nuprl Lemma : co-list-islist-ext-eq-list
∀[T:Type]. co-list-islist(T) ≡ T List
Proof
Definitions occuring in Statement : 
co-list-islist: co-list-islist(T)
, 
list: T List
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
co-list-islist-ext-list
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  co-list-islist(T)  \mequiv{}  T  List
Date html generated:
2016_05_15-PM-10_11_16
Last ObjectModification:
2015_12_27-PM-05_58_25
Theory : eval!all
Home
Index