Nuprl Lemma : co-list-islist-ext-eq-list

[T:Type]. co-list-islist(T) ≡ List


Proof




Definitions occuring in Statement :  co-list-islist: co-list-islist(T) list: List ext-eq: A ≡ B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  co-list-islist-ext-list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule productElimination independent_pairEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  co-list-islist(T)  \mequiv{}  T  List



Date html generated: 2016_05_15-PM-10_11_16
Last ObjectModification: 2015_12_27-PM-05_58_25

Theory : eval!all


Home Index