Nuprl Lemma : co-list-islist-ext-list

[T:Type]. co-list-islist(T) ≡ List


Proof




Definitions occuring in Statement :  co-list-islist: co-list-islist(T) list: List ext-eq: A ≡ B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B co-list-islist: co-list-islist(T) list: List uiff: uiff(P;Q) uimplies: supposing a top: Top nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_uimplies: rev_uimplies(P;Q) bool: 𝔹
Lemmas referenced :  islist-iff-length-has-value length-is-colength has-value_wf-partial nat_wf set-value-type le_wf int-value-type colength_wf co-list-islist_wf bool_wf union-value-type unit_wf2 is-list_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaEquality sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesisEquality extract_by_obid isectElimination hypothesis productElimination independent_isectElimination sqequalRule isect_memberEquality voidElimination voidEquality intEquality natural_numberEquality cumulativity because_Cache independent_pairEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  co-list-islist(T)  \mequiv{}  T  List



Date html generated: 2018_05_21-PM-10_20_19
Last ObjectModification: 2017_07_26-PM-06_37_22

Theory : eval!all


Home Index