Nuprl Lemma : co-list-islist-ext-list
∀[T:Type]. co-list-islist(T) ≡ T List
Proof
Definitions occuring in Statement : 
co-list-islist: co-list-islist(T)
, 
list: T List
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
co-list-islist: co-list-islist(T)
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
top: Top
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
bool: 𝔹
Lemmas referenced : 
islist-iff-length-has-value, 
length-is-colength, 
has-value_wf-partial, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
colength_wf, 
co-list-islist_wf, 
bool_wf, 
union-value-type, 
unit_wf2, 
is-list_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
intEquality, 
natural_numberEquality, 
cumulativity, 
because_Cache, 
independent_pairEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  co-list-islist(T)  \mequiv{}  T  List
Date html generated:
2018_05_21-PM-10_20_19
Last ObjectModification:
2017_07_26-PM-06_37_22
Theory : eval!all
Home
Index