Nuprl Lemma : co-list-nil_wf
∀[T:Type]. (co-list-nil() ∈ colist(T))
Proof
Definitions occuring in Statement : 
co-list-nil: co-list-nil()
, 
colist: colist(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
co-list-nil: co-list-nil()
, 
it: ⋅
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
it_wf, 
unit-subtype-co-list
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
hypothesis, 
applyEquality, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (co-list-nil()  \mmember{}  colist(T))
Date html generated:
2016_05_15-PM-10_09_23
Last ObjectModification:
2015_12_27-PM-05_59_30
Theory : eval!all
Home
Index