Nuprl Lemma : co-list-nil_wf

[T:Type]. (co-list-nil() ∈ colist(T))


Proof




Definitions occuring in Statement :  co-list-nil: co-list-nil() colist: colist(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-list-nil: co-list-nil() it: subtype_rel: A ⊆B
Lemmas referenced :  it_wf unit-subtype-co-list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid hypothesis applyEquality thin sqequalHypSubstitution isectElimination hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (co-list-nil()  \mmember{}  colist(T))



Date html generated: 2016_05_15-PM-10_09_23
Last ObjectModification: 2015_12_27-PM-05_59_30

Theory : eval!all


Home Index