Nuprl Lemma : co-ones_wf

co-ones() ∈ colist(ℤ)


Proof




Definitions occuring in Statement :  co-ones: co-ones() colist: colist(T) member: t ∈ T int:
Definitions unfolded in proof :  co-ones: co-ones() colist: colist(T) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  fix_wf_corec-alt-proof b-union_wf unit_wf2 subtype_rel_b-union-right
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality hypothesis productEquality intEquality hypothesisEquality universeEquality isect_memberEquality independent_pairEquality natural_numberEquality applyEquality cumulativity

Latex:
co-ones()  \mmember{}  colist(\mBbbZ{})



Date html generated: 2016_05_15-PM-10_11_27
Last ObjectModification: 2015_12_27-PM-05_58_38

Theory : eval!all


Home Index