Nuprl Lemma : conil_wf
∀[A:Type]. (conil() ∈ co-list-islist(A))
Proof
Definitions occuring in Statement : 
conil: conil()
, 
co-list-islist: co-list-islist(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
conil: conil()
, 
co-list-islist: co-list-islist(T)
, 
prop: ℙ
, 
it: ⋅
, 
subtype_rel: A ⊆r B
, 
has-value: (a)↓
, 
is-list: is-list(t)
, 
btrue: tt
Lemmas referenced : 
has-value-is-list-of-co-list, 
istype-universe, 
it_wf, 
unit_subtype_colist, 
has-value_wf_base, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
dependent_set_memberEquality_alt, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
applyEquality, 
divergentSqle, 
sqleReflexivity, 
baseClosed
Latex:
\mforall{}[A:Type].  (conil()  \mmember{}  co-list-islist(A))
Date html generated:
2019_10_16-AM-11_38_48
Last ObjectModification:
2018_12_08-PM-00_22_51
Theory : eval!all
Home
Index