Nuprl Lemma : conil_wf

[A:Type]. (conil() ∈ co-list-islist(A))


Proof




Definitions occuring in Statement :  conil: conil() co-list-islist: co-list-islist(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T conil: conil() co-list-islist: co-list-islist(T) prop: it: subtype_rel: A ⊆B has-value: (a)↓ is-list: is-list(t) btrue: tt
Lemmas referenced :  has-value-is-list-of-co-list istype-universe it_wf unit_subtype_colist has-value_wf_base is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid dependent_set_memberEquality_alt sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality applyEquality divergentSqle sqleReflexivity baseClosed

Latex:
\mforall{}[A:Type].  (conil()  \mmember{}  co-list-islist(A))



Date html generated: 2019_10_16-AM-11_38_48
Last ObjectModification: 2018_12_08-PM-00_22_51

Theory : eval!all


Home Index