Nuprl Lemma : has-value-is-list-of-co-list

[T:Type]. ∀[t:colist(T)].  ((is-list(t))↓ ∈ ℙ)


Proof




Definitions occuring in Statement :  is-list: is-list(t) colist: colist(T) has-value: (a)↓ uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bool: 𝔹
Lemmas referenced :  has-value_wf-partial bool_wf union-value-type unit_wf2 is-list_wf colist_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule because_Cache cumulativity hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    ((is-list(t))\mdownarrow{}  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-10_10_05
Last ObjectModification: 2015_12_27-PM-05_58_58

Theory : eval!all


Home Index