Nuprl Lemma : ispair-bool-if-co-list
∀[T:Type]. ∀[t:colist(T)].  (ispair(t) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
ispair: if z is a pair then a otherwise b
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
unit: Unit
, 
exists: ∃x:A. B[x]
, 
ext-eq: A ≡ B
Lemmas referenced : 
colist-ext, 
istype-universe, 
co-list-cases, 
subtype_rel_b-union-left, 
unit_wf2, 
colist_wf, 
unit_subtype_colist, 
ext-eq_inversion, 
b-union_wf, 
subtype_rel_transitivity, 
subtype_rel_weakening, 
bfalse_wf, 
subtype_rel_b-union-right, 
btrue_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
hypothesis_subsumption, 
productEquality, 
independent_isectElimination, 
because_Cache, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
sqequalRule, 
axiomEquality, 
universeIsType
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (ispair(t)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_16-AM-11_38_17
Last ObjectModification:
2019_06_26-PM-04_07_03
Theory : eval!all
Home
Index