Nuprl Lemma : ispair-bool-if-co-list

[T:Type]. ∀[t:colist(T)].  (ispair(t) ∈ 𝔹)


Proof




Definitions occuring in Statement :  colist: colist(T) bfalse: ff btrue: tt bool: 𝔹 uall: [x:A]. B[x] ispair: if is pair then otherwise b member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q guard: {T} uimplies: supposing a and: P ∧ Q unit: Unit exists: x:A. B[x] ext-eq: A ≡ B
Lemmas referenced :  colist-ext istype-universe co-list-cases subtype_rel_b-union-left unit_wf2 colist_wf unit_subtype_colist ext-eq_inversion b-union_wf subtype_rel_transitivity subtype_rel_weakening bfalse_wf subtype_rel_b-union-right btrue_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate universeEquality dependent_functionElimination unionElimination hypothesis_subsumption productEquality independent_isectElimination because_Cache productElimination equalityTransitivity equalitySymmetry equalityElimination sqequalRule axiomEquality universeIsType

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (ispair(t)  \mmember{}  \mBbbB{})



Date html generated: 2019_10_16-AM-11_38_17
Last ObjectModification: 2019_06_26-PM-04_07_03

Theory : eval!all


Home Index