Nuprl Lemma : map-append-empty2
∀[f,b:Top].  (map(f;b) @ [] ~ map(f;b))
Proof
Definitions occuring in Statement : 
map: map(f;as)
, 
append: as @ bs
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
map-append-empty, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[f,b:Top].    (map(f;b)  @  []  \msim{}  map(f;b))
Date html generated:
2016_05_15-PM-10_08_57
Last ObjectModification:
2015_12_27-PM-05_59_54
Theory : eval!all
Home
Index