Nuprl Lemma : pair-listunion
∀[A,B:Type]. ∀[L:Unit ⋃ (A × B)].  L ∈ A × B supposing ispair(L) = tt
Proof
Definitions occuring in Statement : 
b-union: A ⋃ B, 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
ispair: if z is a pair then a otherwise b, 
unit: Unit, 
member: t ∈ T, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ
Lemmas referenced : 
btrue_neq_bfalse, 
equal_wf, 
bool_wf, 
ispair_wf_listunion, 
btrue_wf, 
b-union_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
unionElimination, 
equalityElimination, 
sqequalRule, 
equalitySymmetry, 
hypothesis, 
lemma_by_obid, 
independent_functionElimination, 
voidElimination, 
independent_pairEquality, 
hypothesisEquality, 
isectElimination, 
productEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:Unit  \mcup{}  (A  \mtimes{}  B)].    L  \mmember{}  A  \mtimes{}  B  supposing  ispair(L)  =  tt
 Date html generated: 
2016_05_15-PM-10_09_27
 Last ObjectModification: 
2015_12_27-PM-05_59_22
Theory : eval!all
Home
Index