Nuprl Lemma : non-void-decl-single
∀[T,A:Type].  ∀x:T. ∀eq:EqDecider(T).  (A ⇒ non-void(x : A))
Proof
Definitions occuring in Statement : 
non-void-decl: non-void(d), 
fpf-single: x : v, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
non-void-decl: non-void(d), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x y.t[x; y], 
prop: ℙ, 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
fpf-all-single-decl, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
lambdaEquality, 
universeEquality, 
productElimination, 
independent_functionElimination, 
hypothesis
Latex:
\mforall{}[T,A:Type].    \mforall{}x:T.  \mforall{}eq:EqDecider(T).    (A  {}\mRightarrow{}  non-void(x  :  A))
Date html generated:
2018_05_21-PM-09_30_26
Last ObjectModification:
2018_02_09-AM-10_24_57
Theory : finite!partial!functions
Home
Index